

Porous Materials and Their Structure

Dr. Krishna Gupta Porous Materials, Inc.

Porous Materials And Their Structure

Introduction Pore Structure

- Porosity
- Pore Cross-section
- Pore Shape
- Pore Size
- Pore Size Distribution
- Pore Path
- Pore Surface Area

Characteristics of Pore Structure Characterization Techniques Summary and Conclusion

INDUSTRY	Applications	ROLE OF POROUS STRUCTURE	
BIOTECH	 Implants Body parts Filters for body fluid Barriers for bacteria & viruses Barrier for pollens Storage of body parts Tissue growth Artificial skin 	 Removal of unwanted materials Blood vessel growth Separation of constituents of blood Selective permeation of gases and nutrients Prevention of passage of bacteria, viruses, pollens etc. 	

INDUSTRY	Applications	ROLE OF POROUS STRUCTURE
PHARMACEUTICAL	 Pharmaceutical powders Drugs Bandages Barriers for bacteria Dressings Packaging material Drug delivery pouches 	 High surface area for fast dissolution Vapor and oxygen permeation Controlled liquid permeation Removal of bacteria
FOOD	 Filters for purification & separation Material for packaging & storage Powdered food 	 Removal of bacteria Separation of constituents Prevention of O₂ permeation Absorption

INDUSTRY	Applications	ROLE OF POROUS STRUCTURE
ENVIRONMENTAL	 Filters for water purification Filter for toxicity reduction Filters for desalination Air filters Gas masks 	 Removal of solids, ions, & bacteria Selective gas permeation Adsorption
HYGIENE, GARMENT, & HOUSEHOLD	 Barriers to mite Breathable fabric Diapers Hygienic napkins Adsorption of gas Facial tissue Cosmetic powders Paper towels Bed sheets 	 Moisture transmission Gas transmission Prevention of mite migration Retention of liquid Odor removal

INDUSTRY	Applications	ROLE OF POROUS STRUCTURE	
FILTRATION	 Felts Wire mesh filters Textiles filters Perforated material 	 Removal of solids from liquids and gases Removal of liquids 	
POWER SOURCE	 Separators Electrodes Chemical powders 	 Surface area for reactions Selective ion permeability 	
	 Geotextiles Barriers for water seepage and soil erosion Powders in paints Water storage Cement 	 Keeping out solids Controlled liquid permeation Moisture transmission Prevention of water transmission 	

Industry	Applications	Role of porous structure
PAPER/PRINTING	 Coated paper Packaging paper Felt 	 Controlled ink flow Differential ink flow in x, y, or z directions Vapor transmission
CHEMICAL	 Zeolites Ion exchange resins Catalysts Carbon black Abrasives Fertilizers Metal powders Ceramics 	 High surface area Controlled particle size Controlled porosity

FIBROUS MATERIAL

Porosity due to voids between fibers

POWDER BED

Porosity due to voids between particles and internal voids inside particles.

<u>CONSOLIDATED MATERIAL</u> Porosity in membrane created by voids left inside material

COATED POROUS MATERIAL AND LAMINATED POROUS MATERIAL Structure of coated or laminated porous material.

Structural classification of porous materials

POROSITY - Interstitial Void

High-resolution electron micrograph of the [110] plane of crystalline silicon showing interstitial openings in the plane of atoms

POROSITY - Interstitial Void

SILICON: Interstitial space 66 % of its volume

Arises because atoms cannot be compacted closer together due to strong repulsive forces resulting from overlap of outer electron orbitals.

PORES

•Created by atoms missing from the neighboring lattice sites •Porous materials contain pores and interstitial openings

POROSITY

DEFINITION OF POROSITY

Interstitial void volume in the solid ignored. Only pore volume considered

$$\mathbf{P} = \mathbf{V}_{\mathrm{v}} / [\mathbf{V}_{\mathrm{v}} + \mathbf{V}_{\mathrm{s}}]$$

 $\begin{array}{ll} P &= porosity \\ V_v = volume \ of \ pores \\ V_s &= volume \ of \ solid \ in \\ & the \ material \end{array}$

⇐ Interstitial void Ignored⇐ Pore Volume considered

POROSITY

WIDE RANGE OF POROSITY

Almost zero to very large Large 5 mm size pore in ceramic foam

POROSITY

Typical void size ranges and particle size ranges in some materials of interest.

PORE STRUCTURE

PORE CROSS-SECTION

Normally quite irregular

Sintered metal disc

Membrane

PORE STRUCTURE <u>PORE CROSS-SECTION</u> Circular in some unique materials

Track-etch membrane

Pores normally form highly interconnected and tortuous channels

High depth of focus reveals irregular cross-section and variation with depth

Tortuous channels in cross-section of membrane

PORE STRUCTURE PORE SHAPE

Cylindrical pores without much interconnectivity in membranes can be produced by special techniques

Structure revealed by filling pores with insoluble material and dissolving the matrix

PORE STRUCTURE PORE PATH

PORE STRUCTURE PORE PATH

 τ = tortuosity l = thickness of porous medium l_c = length of pore path

(Flow Rate) $\propto [(D^4 \Delta p) / I_c]$ Flow through tortuous path is less

PORE STRUCTURE PORE SIZE

Varies along the course of the channel

Pore size at any location determined by cross-section at that location Pores with irregular cross-sections: Pore size not defined

In all measurement techniques **pore diameter (D)** at the desired location in the pore is defined as the **diameter of an equivalent cylindrical pore**

PORE STRUCTURE PORE SIZE

Definition of measured pore size

PORE STRUCTURE PORE SIZE DISTRIBUTION

May be very narrow May be broad May be multi-modal

Bimodal distribution in a powder bed

PORE STRUCTURE PORE SURFACE AREA

Pore surface area is determined by the:

- Shape of pore
- Size of pore
- Roughness of pore surface

Role of the three different kinds of pores

Envelope surface area

The pore volume has the following components

Total pore volume

 \equiv

Volume of closed pores + Volume blind pores + Volume of through pores

CHARACTERISTICS OF PORE STRUCTURE

Largest through pore *throat* diameter (bubble point pore diam): *Barrier properties*

Mean flow through pore throat diameter:	Measure of performance
Pore size distribution:	Measure of efficiency
Gas permeability:	Gas flow rate, Rate of Process
Liquid permeability:	Flow rate of liquid chemicals
Pore volume & pore volume distribution:	Dirt holding capacity
Diffusion permeability:	Small flow rates or leak rates
Envelope surface area:	Filtration
Total surface area:	Reaction rates

CHARACTERISTICS OF PORE STRUCTURE

Simulation of true service conditions

- **Effect of Compressive Stress**
- Effect of Cyclic Stress
- Effect of Temperature
- Effect of Chemical Environment (Use of different humidity and chemicals)

Effect of Orientation (Characteristics of in-plane pores and pores in the x & y directions)

CHARACTERISTICS OF PORE STRUCTURE PORE CHARACTERISTICS OF GRADED, COATED & LAMINATED MATERIALS

Graded pore structure in membrane

CHARACTERIZATION TECHNIQUES

MACROSCOPIC MEASUREMENT TECHNIQUE - For large pores MICROSCOPIC TECHNIQUES - Very few pores are measurable PARTICLE CHALLENGE TECHNIQUE - Expensive & Time Consuming

Particle challenge technique

CHARACTERIZATION TECHNIQUES CAPILLARY FLOW POROMETRY

-Measures differential gas pressure and flow rates through dry samples and samples wetted by a wetting liquid

-Computes through pore throat diameters, distribution and gas permeability -Widely used & highly versatile

PRINCIPLE OF CAPILLARY FLOW POROMETRY

CHARACTERIZATION TECHNIQUES LIQUID - LIQUID POROMETRY

One immiscible high surface tension wetting liquid displaces from pores another low surface tension wetting liquid Pore structure computed from measured

- Differential pressure
- Flow rate of wetting liquid with higher surface tension
- Interfacial tension between the two liquids

CHARACTERIZATION TECHNIQUES CAPILLARY CONDENSATION FLOW POROMETRY

- Measures flow through pores not blocked by condensed vapor
- Computes through pore diameter, distribution and flow rate

CHARACTERIZATION TECHNIQUES LIQUID EXTRUSION POROSIMETRY

-Measures differential gas pressure and volume of wetting liquid displaced from

pores

-Computes through pore volume, diameter and distribution

CHARACTERIZATION TECHNIQUES INTRUSION POROSIMETRY

- Increasing pressure forces non-wetting liquid in to pores
- Measures pressures and intrusion volume
- Computes pore volume and diameter

Mercury (Mercury porosimetry)Water (Aquapore, Vacuapore)Other non-wetting liquids

CHARACTERIZATION TECHNIQUES GAS ADSORPTION (BET) & CONDENSATION

- Measures surface area from amount of gas adsorption
- Measures pore volume and diameter from amount of gas condensation

PRINCIPLE OF THE GAS ADSORPTION TECHNIQUE

CHARACTERIZATION TECHNIQUES NOVEL TECHNIQUES

THERMOPOROMETRY

Measures freezing points of a liquid in pores having different diameters Pore diameter and distribution are computed

GAS PERMEATION TECHNIQUE

- Measures flow rates of gases of differing molecular diameter
- Computes pore diameter and distribution

CHARACTERIZATION TECHNIQUES

Pore Structure Characteristics (Size, Volume, & Distribution)			
Size: > 500 μm	Size: < 500 μm	Size: 500 – 0.002 μm	Size: < 0.002 μm
1. Macroscopic techniques	1. Microscopy	1. Particle challenge	1. Capillary condensation flow porometry
		2. Flow porometry	2 Liquid – Liquid porometry
		3. Extrusion porosimetry	3. Gas permeation porometry
		4. Gas adsorption	4. Thermoporometry
		5. Intrusion porosimetry	5. Gas adsorption
Pore Structure Characteristics (Fluid Permeability, Porosity)			
1. G	as/Vapor Permear	netry	
2. Li	quid Permeametry	/	
2.0			

3. Pycnometry

- 1. The pore structure is normally very complex. Characteristics must be carefully defined
- 2. Characteristics need to be measured:

Bubble point (largest pore size) Mean flow pore size Pore size distribution Pore volume Pore volume distribution Liquid/gas permeability Total surface area Envelope surface area

- 3. A number of commercial techniques are available
- 4. The techniques, their capabilities, their limitations and all new developments will be critically examined in the following presentations

