

CAPILLARY FLOW POROMETRY WITH EXTENDED CAPABILITY

Dr. Krishna Gupta

OXEBNIEW

- Advanced Flow Porometry
- Microflow Porometry
- In-Plane Porometry (Directional Porometry)
- Compression Porometry
- Cyclic Compression Porometry
- Clamp-On Porometry
- Quality Control (QC) Porometry
- Nanopore Porometry
- Complete Filter Cartridge Analyzer
- Integrity Analyzer
- Bubble Point Tester
- Custom Porometers
- Liquid-Liquid Porometry
- Capability to Test Samples with a Wide Variety of Shapes and Sizes

THE ADVANCED POROMETER

IMPROVEMENTS

ADVANCED POROMETER 1. Automated uniform compression of O-rings with desired pressure 2. Automatic sample wetting Reduced test duration 3. Minimal pressure drop correction 4. May use differential pressure transducer close to sample 5. Sample cutting not essential 6. Minimal customer involvement 7. Considerably reduced test

duration

1. Manual screw on cap

BASIC POROMETER

- 2. Manual after dismantling sample chamber
- 3. Pressure drop in the system can be appreciable
- 4. Uses gauge pressure transducers
- 5. Sample cutting normally required

6. Very little customer involvement

MICROFLOW POROMETRY

- A pressure transducer is added downstream
- Rate of change of downstream pressure yields effective flow rate

MICROFLOW POROMETRY Wet & Dry Curves: Showing very small measurable flow rates

IN-PLANE & RIRECTIONAL POROMETRY

 Top and bottom of the sample blocked to force gas to flow out through the perimeter
Flow rate measured with increasing differential pressure

IN-PLANE & RIBECTIONAL POROMETRY

Through Plane and In-Plane Pore Structure Characteristics

Material Tested	Material Thickness	Bubble Point Pore Diameter (microns)		Ratio of Pore Diameters
	mm (approx.)	Through-plane	In-plane	
Wrapping Paper	0.06	26.3	0.96	27.4
Printer Paper	0.08	12.4	1.10	11.3
Notepad Backing – Cardboard	0.92	6.7	3.53	1.90
Transmission Fluid Filter Felt (thick, dense)	1.90	80.4	43.3	1.86
Meltblown Sheet (dense)	1.80	114.3	68.8	1.66
Poly Felt Blanket (soft)	2.00	51.8	19.8	2.62
Poly Filter (hard, thin)	0.49	51.1	24.1	2.12
Liquid Filter (thick, hard)	1.50	34.5	15.3	2.25

IN-PLANE & RIBECTIONAL POROMETRY

Direction	Bubble point (µm)	Mean flow (µm)	Permeability (darcy)
Х	27.1	3.86	5.3
Y	39.1	3.39	6.9
Z	63.0	15.2	22.5

POROMETRY OF LOYERER STRUCTURES BY IN-PLANE & RIBECTIONAL POROMETRY **In-Plane Porometry:** Through plane flow blocked Test characterizes layers with larger pores Pore size: Layer 1 > Layer 2 > Layer 3 Flow blocked **Flow Flow** Gas pressure for flow through layers Flow Flow Flow Flow Pressure: $(p_1 - p_1') < (p_2 - p_2') < (p_3 - p_3')$ Flow Layers: 1 1+2 1+2+3 Gas Flow blocked Flow blocked

POROMETRY OF LAYERER STRUCTURES HOT GAS FIFTER

COMPRESSION POROMETRY

- Compressive stresses can appreciably modify the pore structure
- Compression porometer keeps the sample under compressive stress during the test

COMPRESSION POROMETRY

COMPRESSION POROMETRY

Differential Pressure			Pore Diameter, µm		
Stress, kPa	Bubble point, psi	Mean flow, psi	Bubble point, µm	Mean flow, µm	
0	2.801	5.916	16.347	7.738	
34.5	3.143	6.004	14.567	7.625	
103	3.712	8.750	12.333	5.232	
172	4.114	8.774	11.129	5.218	
379	4.482	8.886	10.216	5.152	

CYCLIC COMPRESSION POROMETRY

 Pore sizes may change appreciably after repeated stressing cycles
Example: Felts
Sample chamber of Cyclic
Compression Porometer for stressing the sample

CYCLIC COMPRESSION: EFEETS

Material	Felt 1	Felt 2
Max Comp. Stress (psi)	500	750
Cycles	15	2000
% change in BP diameter	-71.1	-68.4
% change in mean flow pore diameter	-30.3	-15.8

CLAMP-ON POROMETRY <u>Testing without cutting</u>

Sample Chamber for Clamp-On Porometer

CLAMP-ON POROMETRY

Minimal Time: Tests can be performed quickly, in situ. Material Preparation: No cutting ► No waste Sampling: Several tests can be run on areas of a sheet of materials without cutting to check homogeneity

BP, MFPD, distribution peak at three locations on a filter material

BP MFPD

QC POROMETER

Simplified Capillary Flow Porometer

- Less to configure
- Easy and quick operation
- User-friendly
- Pass/Fail indicators

NANAPARE PARAMETRY

Measurement of Nanometer

- Differential pressure used up to 2000 psi
- Measurable pore size down to 0.005 $\,\mu\text{m}$
- Membranes need to withstand 2000 psi

COMPLETE FILTER CARTRIDGE ANALYZER

- Tests fully assembled complete filter cartridges
- Cartridge of almost any length & diameter accommodated
- End seals by automated pneumatic pressure

COMPLETE FILTER CARTRIDGE ANALYZER

Typical Results

Large flow rates can be detected

Somelete Filter Sortringe Analyzer

PORE STRUCTURE AS A FUNCTION OF CARTRIDGE LENGTH

PORE STRUCTURE AS A FUNCTION OF CARTRIDGE LENGTH

Table 6: Difference between the bubble point pore diameters (BPPD) and mean flow pore diameters (MFPD) at the left and right locations in two cartridges

	Cartridge #1		Cartridge #2	
Difference Between	BBPD	MFPD	BBPD	MFPD
Left & Right	24%	20%	65%	56%

The pore structure along cartridge length may be unacceptable

EIFTER INTEGRITY ANALYZER

-Flow measured down stream to detect flow before bubble point -Sensitivity can be improved by using different liquids

MULTI-HEAR BUBBLE POINT TEST SYSTEM

Single-chamber test systems can be impractical for high volume testing Bubble point testers can accommodate:

- Any number of test heads
- Any type of sample & cartridge
- Automated testing with pass/fail option

EXAMPLES OF CUSTOM POROMETERS

The custom porometers capable of testing cartridges and filtration media and performing liquid permeability test

MULTIPOINT SIMULTANEOUS PORE STRUCTURE ANALYZERS

CUSTOM POROMETERS

Bubble point as a function of length (Down Web) at the five different locations along the width

Permeability as a function of length (Down Web) at the five different locations along the width

CONTROLLER CHEMICAL ENVIRONMENT POROMETERS

100

Two unique models of custom porometer capable of testing under controlled humidity & temperature

UNIQUE CAKE FORMING POROMETER

Porometer capable of forming cake from slurry and testing the cake in-situ

UNIQUE CAKE FORMING POROMETER

Porometer capable of forming cake from slurry under controlled pressure and flow

UNIQUE CAKE FORMING POROMETER

Effect of deposition of a slurry on pore structure of media before and after cake formation

Pore Diameter	Media µm	1 st Deposit µm	Change	2 nd Deposit µm	Change
Bubble Point	6.32	2.98	53%	1.09	83%
Mean Flow Pore Diameter	2.83	0.715	75%	0.237	92%

LIQUIR-LIQUIR POROMETER

- Wetting liquid-1 is used to fill the pores of the sample
- Wetting liquid-2 having higher surface tension is used to displace liquid-1 from pores and flow through pores
- Flow rate of higher surface tension liquid-2 measured with differential pressure through dry and wet sample
- Pore size, D, computed from differential pressure, p, and interfacial tension & contact angle

 $D = 4 \gamma \cos \theta / p$

 Θ = contact angle γ = interfacial tension

 Pore distribution and liquid permeability computed

LIQUIR-LIQUIR POROMETER

LIQUIR-LIQUIR POROMETER

Wet and Dry flow by LLP

Pore Diameter (microns)

Pore Distribution by LLP

LL POROMETERS & CE POROMETERS

Characteristics	LLP	CFP	
Test pressure	About an order of magnitude lower	About an order of magnitude higher	
Effect of pressure On pore structure	Negligible	Can be appreciable	
Through pore throat diameters	Measurable	Measurable	
Smallest measurable pore diameter	2 nm	13 nm	
Bubble point	Not accurately measurable	Accurately measurable	
Mean Flow Pore Diameter	Measurable	Measurable	
Pore distribution	Measurable	Measurable	
Liquid permeability	Measurable	Not measurable	
Gas Permeability	Not Measurable	Measurable	

EXAMPLES OF TESTING OF A WIRE VARIETY OF SAMPLE SHAPES AND SIZES Testing of Sheet or Disc Samples

Insert

Sample

Glue

O-ring

Sample

Chamber

O-ring

Insert

Gasket

Sample

Sample

Chamber

TESTING OF HOLLOW FIBERS

Long thin wall flexible tubular products (2 mm) (Testing of a bundle of hollow fibers)

Gas flow: Inside to Outside Outside to Inside

TESTING OF SMALL ORD SHAPER COMPONENTS

<u>Mounted on a plate</u> (Absorbents in healthcare use, Pen tips)

Inserted in small tubular opening (Ceramic spikes)

Mounting of Powder samples

TESTING OF DIAPERS

TINY (8.5 MM RIAMETER) SAMPLE

Sample holder for Tiny < 1/2 mm diameter samples

THIN TUBULAR FLEXIBLE POROUS PRODUCT

- The basic theory of porometry is the same, but because of physical realities & complex test requirements the technology is involved.
- Product applications determine the appropriate technology for characterization.
- Many ways of dealing with varying sample shapes, material properties and configurations have been developed.
- Advanced, microflow, in-plane, clamp-on, compression, and QC porometers are finding many applications a wide range of industries.

