

Wetting Liquid Extrusion Techniques: Part II- Liquid Extrusion Porosimetry Dr. Krishna Gupta Porous Materials, Inc.

OVERVIEW

- Basic Principles
- Liquid Extrusion Porosimeter
- Measurable Pore Structure Characteristics
- Special Features
- Comparison with Mercury Intrusion Porosimetry
- Wide Applicability
- Conclusions

BASIC PRINCIPLES

This is a Wetting Liquid Extrusion Technique

- Wetting liquids spontaneously fill the pores of sample
- Differential gas pressure can be used for extrusion of wetting liquid from pores
- Pore diameter determines the required pressure

$$p = \frac{\left[4 \cdot \gamma_{l/} \cdot \cos\theta\right]}{D}$$

- p = differential pressure
- γ = surface tension of the liquid
- D = pore diameter
- θ = contact angle

BASIC PRINCIPLES

Volume of extruded liquid = Pore volume

- How can the liquid be collected and measured without interference from gas?
- Consider supporting sample on a membrane containing wetting liquid filled pores smaller than sample pores

ASIC PRINCIPL Gas & liquid flowing out of the pore Test pressure required to empty sample pores Pressure needed to empty membrane pores \rightarrow Extruded liquid flows Gas does not pass \leftarrow through liquid filled out through liquid filled pores of membrane pores of membrane Sample

BASIC PRINCIPLES

THE LIQUID EXTRUSION POSIMETER

THE INSTRUMENT

THE PMI LIQUID EXTRUSION POSIMETER

RATA ANALYSIS

Through Pore Diameter (D = $4\gamma \cos\theta/p$)

All pore diameters from pore entrance to pore throat are measured

POBE RIAMETERS MEASUBABLE BY SOME OTHER TECHNIQUES

THROUGH PORE RIAMETER

Orientation of Converging and Diverging Pores

THROUGH PORE RIAMETER

Converging & diverging pores in a textile

THROUGH PORE PLAMETER Diameters NOT measurable

- Blind pores
- Closed pores
- \odot Narrow interconnecting pores between wider ones
- Some pores in complex Pore network

Diameters and Volumes of Shaded Pores Not Detectable By Liquid Extrusion Porosimetry

THBOUGH POBE VOLUME

Volume of blind pores, close pores & some pores in complex pore networks are not measured

THROUGH PORE VOLUME RISTRIBUTION

THROUGH PORE VOLUME RISTRIBUTION

> Volume distribution function, f_v :

fv = - d V /d log D

Pore volume in any range of pore diameters:

$$\int dV = -\int f(V) d(\log D)$$

= Area under the function

THROUGH PORE SURFACE AREA

Computed from measured variation of volume with pressure or diameter

dS/dV = 4/D

THROUGH PORE SURFACE AREA

SATURATION - RESATURATION - RESATURATION VOLUME

Expected behavior of sample

Differential Gas Pressure on Sample

SATUBATION - RESATUBATION - BESATUBATION VOLUME

Saturation & Desaturation Behavior of Fibrous Pad

LIQUIR PERMEABILITY

Permeability computed using the Equation

LIQUIR PERMEABILITY

Darcy's Law:
$$v = -\frac{k}{\mu} \cdot \frac{dp}{dx}$$

v = linear flow rate

k = *permeability*

 μ = viscosity of the fluid

p = pressure

x = displacement in the direction of flow

In terms of volume flow rate:

$$\underline{F} = k \cdot \left(\frac{A}{\mu \cdot \ell}\right) \cdot \left(P_i - P_o\right)$$

- <u>F</u> = flow rate in volume at the pressure, **p**, and
 - the measurement temperature, T per unit time
- / = thickness of the porous material
- P_i = inlet pressure
- P_o= outlet pressure
- A = cross-sectional area of the porous material

LIQUIR ABSORPTION

Many Applications

- Absorption of body fluids during surgery
- Household cleaning products
- Personal hygiene products

LIQUIR ABSORPTION

Liquid Absorption Test Procedure

- Membrane removed from the sample chamber
- Liquid raised just above the support screen
- Instrument starts recording weight of the liquid in the cup about 20 times a second
- Sample placed on the support screen
- Absorption rate is computed from the rate of weight change

ACCUBACY & BEPBODUCIBILITY

SAMPLE	Weight of Wet Sample, g		Weight of Wetting Liquid, g	
	Before Test	After Test	Extruded from Sample	In Balance
Foam	5.4809	2.5172	2.9637	3.0922
Laser Sintered Metal	2.6254	2.1807	0.4447	0.4447
Sintered Metal	2.4490	1.9807	0.4683	0.4760

ACCUBACY & BEPBODUCIBILITY REPEAT TESTS

ACCUBACY & BEPBODUCIBILITY

REPEAT TESTS

"Pore Diameter, Microns"

TESTS UNDER APPLICATION ENVIRONMENTS SAMPLE UNDER COMPRESSIVE STRESS

One piston for compression of sample
Second piston for compression of O-rings

TESTS UNDER APPLICATION ENVIRONMENTS SAMPLE UNDER COMPRESSIVE STRESS

Decreasing influence of compressive stress on pore volume

TESTS UNDER APPLICATION ENVIRONMENTS SAMPLE UNDER COMPRESSIVE STRESS

Effects of compressive stress on pore volume distribution of a felt

Nano fiber Mats: Compressible, Fibrous, contains primarily through pores

Pore Volume:

- Mercury intrusion: Measures through & blind pores
- Liquid Extrusion: Measures through
 - pores
- Pore volume identical

TESTS UNDER APPLICATION ENVIRONMENTS CHEMICAL & THERMAL ENVIRONMENT

A variety of test liquids:
 Oils
 Water
 Sugar solutions
 Fat

Many other application liquids

- Hydrogel testing using water
- Test gas with controlled humidity
- Temperature up to 200°C

Identical Pore Volume

	Through Pore Volume	Approximate Test Pressure	Porosity
Mercury Intrusion	3.62 cc/g	>100 psi	81.1%
Liquid Extrusion	3.65 cc/g	5 psi	81.7%

Much higher test pressure by Mercury Intrusion

Different Pore Volume Distribution

Mercury Intrusion:

Higher volume at large diameters due to compression at high pressure

Different Pore Volume Distribution

Liquid Extrusion:

Higher resolution for small pores Two Peaks

FUEL CELL COMPONENT:

Insensitive to pressure Contains blind pores

- Identical distribution
- Pore Volume
 LEP: 2.05 cc/g
 MIP: 3.66 cc/g
- 44 % uniformly distributed blind pores

COMPARISON WITH MERCURY INTRUSION POROSIMETRY OPERATIONAL CHARACTERISTICS

Liquid Extrusion Porosimetry	Mercury Intrusion Porosimetry		
1. No toxic substance used	1. Mercury used		
2. Low test pressure Negligible structural distortion	2. An order of magnitude higher test pressure Appreciable structural distortion		
3. Sample reusable	3. Sample discarded		
4. Liquid permeability measurable	4. Permeability NOT measurable		
5. Only through pores measurable	5. Through & Blind pores measurable		
6. Samples with pore diameter 2000 μm measurable	6. Samples with pores greater than 200 μ m difficult to measure		

LIQUID EXTRUSION POROSIMETRY WIDE APPLICABILITY

LIQUIR EXTRUSION POROSIMETRY WIDE APPLICABILITY

- Non-rigid pressure sensitive materials like felts, hydrogels, sponges and foams
- Pre-filter materials whose pore volume is important for dirt-holding capacity
- Geotextiles, coated fabrics, sponges and foams containing large pores
- Patches, bandages and implants for healthcare applications & drug holding capacity
- Rocks and soil for oil and water holding capacity
- Nonwovens, fuel cell components, and textiles for liquid and chemical holding capacity

LIQUID EXTRUSION POBOSIMETBY

WIDE APPLICABILITY

Pore volume of thin fuel cell component using 5 layers

LIQUIR EXTRUSION POROSIMETRY WIDE APPLICABILITY

Pore volume of large pores in sintered metal implant using mineral oil

SUMMARY & CONCLUSIONS

- We have considered the basic principles of wetting liquid extrusion porosimetry.
- We have analyzed the technique of liquid extrusion porosimetry.
- We have discussed the measurement and of pore structure characteristics and their significance.
 - Through pore volume,
 - Pore diameter,
 - Volume distribution,
 - Surface area,
 - Liquid permeability.

SUMMARY & CONCLUSIONS

We have compared the techniques, LEP & MIP, highlighting the differences in their operational features.

